当前位置:首页  师资队伍  电气工程  正高

刘福鑫

作者: 审核人: 访问量:9058发布时间:2018-09-06

名:刘福鑫性别:职务:
职称:教授导师类别:博士生导师办公室:365best体育官网入口3号楼320室
研究领域:无线电能传输,变换器拓扑与控制,电能互联系统
电话:
Email:liufuxin@nuaa.edu.cn



个人简介

刘福鑫,教授,博士生导师。研究方向:无线电能传输,变换器拓扑与控制,电能互联系统。

发表SCI/EI论文80余篇,申请和授权中国发明专利10余项。主持国家自然科学基金2项,国家重点研发计划子课题1项,江苏省自然

科学基金1项,台达电力电子科教发展基金2项,光宝电力电子科研基金1项,其它类20余项。

其博士论文“组合式三电平直流变换器及其软开关技术”获得江苏省优秀博士学位论文,获教育部高等学校自然科学奖一等奖1项。

IEEE Senior Member,国家自然科学基金通讯评审专家,江苏省“六大人才高峰”高层次人才,

Journal of Power Electronics (SCIE期刊)副主编,中国电源学会无线电能传输技术及装置专委会委员,

中国机械工业教育协会高等工程教育学科专业教学委员会委员。获得慕尼黑工业大学“August-Wilhelm Scheer Visiting Professor”

计划资助,并受聘为慕尼黑工业大学客座教授、高等研究院(TUM Institute for Advanced Study)Honorary Fellow、

2018年“TUM Ambassador”。



学术成果


(1)国际期刊:


[1]M. Zhou, F. Liu, K. Lu, X. Chen. Modular stacked multiport wireless energy interconnection system with virtual AC bus

 and its power flow control strategy. IEEE Transactions on Power Electronics, 2022, 37(12): 15774-15784.

[2]Zhou, F. Liu, S. Li, X. Chen. A 1-kW and 100-cm distance magnetically coupled resonant WPT system achieving 80% 

efficiency. IEEE Transactions on Transportation Electrification, 2022, 8(3): 4001-4013.

[3]X. Zhang, F. Liu, T. Mei. Multifrequency phase-shifted control for multiphase multiload MCR WPT system to achieve 

targeted power distribution and high misalignment tolerance. IEEE Transactions on Power Electronics, 2021, 36(1): 

991-1003.

[4]F. Liu, Z. Ding. Cross interference suppression methodology by printed circuit board type metamaterial in multi

-frequency multi-load magnetically coupled resonant wireless power transfer system. IET Power Electronics, 2021, 

14(1): 169-182.

[5]X. Chen, Z. Han, F. Liu. Selected harmonic elimination-derived multifrequency pulse width modulation control strategy

 for multi-load MCR WPT system with single transmitting coil. IET Power Electronics,2020, 13(17): 3871-3879.

[6]F. Liu, Z. Ding, X. Fu, R. Kennel. Parametric optimization of a three-phase MCR WPT system with cylinder-shaped coils

 oriented by soft-switching range and stable output power. IEEE Transactions on Power Electronics, 2020, 53(1): 1036-

1044.  

[7]F. Liu, Y. Yang, Z. Ding, X. Chen, R. Kennel. A multi-frequency superposition methodology to achieve high efficiency 

and targeted power distribution for multi-load MCR WPT system. IEEE Transactions on Power Electronics, 2018, 33(10): 

9005-9016.

[8]F. Liu, Y. Yang, Z. Ding, X. Chen, R. Kennel. Eliminating cross interference between multiple receivers to achieve 

targeted power distribution for a multi-frequency multi-load MCR WPT system. IET Power Electronics, 2018, 11(8): 

1321-1328.

[9]F. Liu, Y. Yang, D. Jiang, X. Ruan, X. Chen. Modeling and optimization of magnetically coupled resonant wireless 

power transfer system with varying spatial scales. IEEE Transactions on Power Electronics, 2017, 32(4): 3240-3250.

[10]F. Liu, Y. Chen, X. Chen. Comprehensive analysis for three-phase three-level LC-type resonant dc/dc converter with

 variable frequency control-series resonant converter. IEEE Transactions on Power Electronics, 2017, 32(7): 5122-5131.

[11]F. Liu, Z. Wang, Y. Mao, X. Ruan. Asymmetrical half-bridge double-input DC-DC converters adopting pulsating voltage 

source cells for low power applications. IEEE Transactions on Power Electronics, 2014, 29(9): 4741-4751.

[12]F. Liu, G. Hu, X. Ruan. Three-phase three-level DC/DC converter for high input voltage and high power applications-

adopting symmetrical duty cycle control. IEEE Transactions on Power Electronics, 2014,29(1): 56-65.

[13]F. Liu, Y. Chen, G. Hu, X. Ruan. Modified three-phase three-level DC/DC converter with zero-voltage-switching 

characteristic- adopting asymmetrical duty cycle control. IEEE Transactions on Power Electronics, 2014, 29(12):6307-6318.

[14]F. Liu, J. Yan, X. Ruan. Zero-voltage and zero-current-switching PWM combined three-level DC/DC converter. IEEE 

Transactions on Industrial Electronics, 2010, 57(5): 1644-1654.







(2)国际会议:

[1]P. Luo, F. Liu, X. Chen. Multi-port full-duplex simultaneous wireless information/power transfer method based on 

4PAM modulation scheme with 1.25Mbps data rate. Proc. IEEE PEDG, 2023.

[2]Z. Ning, F. Liu, S. Yu, X. Chen. Comprehensive analysis on the current imbalance in modular IPOP WPT systems with 

LCC compensated sub-modules. Proc. IEEE PEDG, 2023.

[3]M. Zhou, F. Liu, K. Lei, X. Chen. A modular stacked architecture with virtual AC bus for multi-port wireless energy 

interconnection system. Proc. IEEE IECON, 2021.

[4]S. Yu, F. Liu, M. Zhou, X. Chen. Comprehensive analysis on the imbalance of voltage and current in multi-module 

series-parallel WPT systems. Proc. IEEE IECON, 2021.

[5]H. Shen, F. Liu, C. Yan, X. Chen. Analysis and optimization of high-power MCR bidirectional WPT system with high 

distance- diameter ratio. Proc. IEEE IECON, 2021.

[6]C. Yan, F. Liu, H. Shen, X. Chen. Three-port magnetically coupled resonant wireless energy router with dual sources 

and dual loads and its power management strategy. Proc. IEEE IECON, 2021.

[7]Z. Ding, F. Liu. A metamaterial design for suppression of cross interference in multi-frequency multi-load MCR WPT 

system. Proc. IPEMC-ECCE Asia, 2020.

[8]Z. Han, F. Liu, X. Chen. Multi-frequency pulse width modulation control strategy for multi-Load MCR WPT system with 

single transmitting coil. Proc. IPEMC-ECCE Asia, 2020.

[9]X. Zhang, F. Liu, K. Lei, S. Yu, C. Yan. Three-port magnetically coupling resonant wireless energy router and its 

zero-power-flow control scheme. Proc. IEEE IECON, 2020.

[10]M. Zhou, S. Li, X. Chen, F. Liu. A parameter design methodology based on voltage/current stress optimization for 

LCCL-LC compensated MCR WPT systems. Proc. IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer(WoW), 

2020.

[11]S. Li, M. Zhou, X. Chen, F. Liu. Parameters optimization for zero-voltage-switching realization in LCCL-LC 

compensated MCR WPT systems. Proc. IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), 2020.

[12]Z. Ding, F. Liu, Y. Yang, X. Chen, R. Kennel. High-efficiency design and close-loop power distribution control for 

double-frequency double-load magnetically coupled resonant wireless power transfer system. Proc. IEEE APEC, 2019.

[13]W. Ye, F. Liu, T. Mei, X. Chen, R. Kennel. Transmission characteristics analysis of a double-cheeked MCR WPT system

 with two receivers under varying spatial scales. Proc. IEEE APEC, 2018.

[14]T. Mei, F. Liu, C. Jiang, X. Chen, R. Kennel. Magnetic-field-model based analysis of two-phase magnetically coupled 

resonant wireless power transfer system. Proc. IEEE APEC, 2018.

[15]X. Fu, F. Liu, X. Chen. Optimization of coils and control strategy for a three-phase magnetically coupled resonant 

wireless power transfer system oriented by the optimal output power characteristics. Proc. IEEE ECCE, 2017.

[16]Y. Yang, Z. Ding, F. Liu, X. Chen. A double-frequency superposition methodology for high efficiency and oriented 

power distribution of MCR WPT system with two receivers. Proc. IEEE ECCE, 2017.

[17]W. Ye, L. Chen, F. Liu, X. Chen, X. Wang. Analysis and optimization of 3-coil magnetically coupled resonant wireless 

power transfer system for stable power transmission. Proc. IEEE ECCE, 2017.

[18]Y. Yang, F. Liu, X. Chen. A maximum power point tracking control scheme for magnetically coupled resonant wireless 

power transfer system by cascading SEPIC converter at the receiving side. Proc. IEEE APEC, 2017.

[19]X. Fu, F. Liu, X. Chen. Optimization of coils for a three-phase magnetically coupled resonant coupled wireless power 

transfer system oriented by the zero-voltage-switching range. Proc. IEEE APEC, 2017.

[20]C. Jiang, F. Liu, X. Ruan, X. Chen. Transmission characteristics analysis of a three-phase magnetically coupled 

resonant wireless power transfer system. Proc. IEEE ECCE, 2016.

[21]L. Chen, F. Liu, X. Ruan, X. Chen. Modeling and investigation of 4-coil wireless power transfer system with varying 

spatial scales. Proc. IEEE ECCE, 2016.

[22]D. Jiang, Y. Yang, F. Liu, X. Ruan, X. Chen. Optimization of coils for magnetically coupled resonant wireless power 

transfer system based on maximum output power. Proc. IEEE APEC, 2016.

[23]D. Jiang, Y. Yang, F. Liu, X. Ruan, C. Wang. Modeling and investigation of magnetically coupled resonant wireless 

power transfer system with varying spatial scales. Proc. IEEE ECCE, 2015.

[24]L. Chen, F. Liu, Y. Chen, X. Ruan, C. Wang. Three-phase three-level LC-type parallel resonant DC/DC converter with 

variable frequency control. Proc. IEEE ECCE, 2015.

[25]Y. Chen, F. Liu, G. Hu, X. Ruan. Modified three-phase three-level DC/DC converter -adopting asymmetrical duty cycle 

control. Proc. IEEE IPEC, 2014.

[26]Y. Jiang, F. Liu, X. Ruan, L. Wang. Optimal idling control strategy for three-port full-bridge converter. Proc. 

IEEE IPEC, 2014.

[27]F. Jin, F. Liu, X. Ruan, X. Meng. Multi-phase multi-level LLC resonant converter with low voltage stress on the 

primary-side switches. Proc. IEEE ECCE, 2014.

[28]Y. Chen, F. Liu, X. Ruan, X. Meng. Three-phase three-level LC-type series resonant DC/DC converter with variable 

frequency control. Proc. IEEE ECCE, 2014.



(3)国内期刊:

[1]周明华,刘福鑫,陈旭玲,等.虚拟母线式多端无线能量互联系统混合式多线圈结构设计与效率优化.中国电机工程学报, 2024.

[2]沈豪杰,刘福鑫,陈旭玲,等.基于三级式可扩展多模块并联架构的低压大电流高距径比无线电能传输系统.中国电机工程学报, 2024.

[3]雷珂林, 刘福鑫. 基于频分复用的多端全双工无线能量-信息同步传输方法. 中国电机工程学报, 2022.

[4]金峰, 刘福鑫, 阮新波. 采用模块化结构的多相多电平LLC谐振变换器. 中国电机工程学报, 2015.

[5]刘福鑫, 陈悦, 胡高平, 阮新波. 采用不对称控制方式的三相三电平直流变换器. 中国电机工程学报,2014.

[6]刘福鑫, 潘子周, 阮新波. 一种boost型双向桥式直流变换器的软开关分析. 中国电机工程学报,2013.

[7]刘福鑫, 阮洁, 阮新波, 杨东升, 李艳. 采用交变脉冲电源单元的隔离型多输入直流变换器. 电工技术学报,2012.

[8]刘福鑫, 毛韵雨, 王志成, 阮新波. 采用脉冲电压源单元的不对称型双输入直流变换器. 中国电机工程学报,2012.

[9]刘福鑫, 杨朔, 阮新波. 新型对称控制方式三相三电平直流变换器. 中国电机工程学报,2012.

[10]刘福鑫, 阮洁, 阮新波. 一种多端口直流变换器的系统生成方法-采用单极性脉冲电源单元. 中国电机工程学报,2012.

[11]刘福鑫, 熊小玲, 阮新波. 软开关PWM组合式三电平变换器的磁集成策略. 中国电机工程学报, 2010.




(4)国家发明专利:

[1]刘福鑫, 阮新波. 零电压开关PWM组合型三电平直流变换器. 专利号:ZL200610098274.4

[2]刘福鑫, 阮新波. 零电压零电流开关PWM组合型三电平直流变换器. 专利号:ZL200610098273.X

[3]刘福鑫, 杨朔, 阮新波. 对称控制型三相三电平直流变换器及其对称控制方法. 专利号:ZL201010598995.8

[4]刘福鑫,陈悦,胡高平,阮新波. 一种简化型三相三电平直流变换器的不对称控制方法. 专利号:ZL201310405692.3

[5]刘福鑫,张吾杨,阮新波. 一种双频控制型三相三电平直流变换器及其控制方法. 专利号:ZL201310549320.8

[6]周明华,刘福鑫. 虚拟母线式模块化多端无线能量互联系统及其控制方法. 专利号:CN202111121547.3

[7]周明华,刘福鑫,李帅旗. 一种适用于中程千瓦级磁谐振式无线供电系统的优化设计方法及系统. 专利号:CN202011416756.6

[8]沈豪杰, 刘福鑫, 陈旭玲. 低压大电流三级式可拓展无线电能传输电路及控制方法. 专利申请号:CN202310001392.2

[9]陆孔军, 刘福鑫, 陈旭玲. 一种双模一体化复合型多端无线电能路由器及其控制方法. 专利申请号:CN202310511097.1



(5)获奖情况:

[1]教育部高等学校自然科学奖一等奖;

[2]江苏省优秀博士学位论文;

[3]指导本科生获得全国大学生电子设计竞赛全国一等奖、江苏省赛区一等奖;

[4]指导本科毕业设计获得江苏省优秀毕业设计论文一等奖两项,二等奖两项;

[5]南航365best体育官网入口 “教育硕果奖”一等奖;

[6]南航365best体育官网入口“十一五”期间教书育人三等奖。



承担项目


[1]兼具强鲁棒性和感知特征的磁谐振式无线能量路由基础理论研究,国家自然科学基金;

[2]源-网-荷高度电力电子化的电力系统稳定性分析理论,国家重点研发计划子课题;

[3]多输入直流变换器拓扑及其控制策略研究,国家自然科学基金;

[4]xxx电源路由技术,基础加强计划技术领域基金项目;

[5]xxx分布式控制技术,国防科技快速响应课题;

[6]多维/多相磁谐振式无线电能传输关键技术研究,江苏省自然科学基金面上项目;

[7]基于动态感知与强鲁棒性的多端无线充电关键技术开发,江苏省“六大人才高峰”高层次人才项目(新能源汽车产业);

[8]变空间尺度磁谐振式无线电能传输最大功率/效率跟踪控制研究,光宝电力电子技术科研基金;

[9]高效宽适应性三相三电平直流变换技术研究,台达电力电子科教发展基金;

[10]应用于电动汽车的多端口直流变换器及其控制方法研究,台达电力电子科教发展基金;

[11]电动汽车用多端口功率变换系统及其能量管理策略研究,江苏省新能源发电与电能变换重点实验室开放研究基金;

[12]48V/50A DC/DC电源模块研制,企业合作项目;

[13]数字式高频智能充电机研制,企业合作项目;

[14]激光器驱动电源研制,企业合作项目;

[15]28V高功率密度模块电源研制,企业合作项目;

[16]星载B3R电源变换拓扑技术研究,企业合作项目。






















电话:+86-25-84892368 传真:+86-25-84892368
地址:中国江苏省南京市江宁区将军大道29 号 1003分箱 版权信息:365best体育官网入口-best365体育网站下载【手机版App下载】
书记信箱 院长信箱